The principle states that adding the same value to both sides of an equation maintains the equality. For example, if a = b, then a + c = b + c. This holds true for any real number ‘c’. Consider the equation x – 3 = 7. Adding 3 to both sides yields x – 3 + 3 = 7 + 3, which simplifies to x = 10, demonstrating the property in action.
This fundamental concept underpins algebraic manipulation. It allows for the isolation of variables and the simplification of equations, which is crucial for solving mathematical problems. Its consistent application prevents alteration of an equation’s solution, ensuring accurate results. This property forms a cornerstone of basic algebra, allowing further properties to be used and builds the basis for more complex mathematical operations.